Set 8: Inference in First-order logic

ICS 271 Fall 2015
Chapter 9: Russell and Norvig

Outline

\diamond Reducing first-order inference to propositional inference
\diamond Unification
\diamond Generalized Modus Ponens
\diamond Forward and backward chaining
\diamond Logic programming
\diamond Resolution

Jniversatinstantiation (i)

- Every instantiation of a universally quantified sentence is entailed by it:
$\frac{\forall v \alpha}{\operatorname{Subst}(\{\mathrm{v} / \mathrm{g}\}, \alpha)}$
for any variable v and ground term g
- E.g., $\forall \mathrm{x} \operatorname{King}(x) \wedge \operatorname{Greed} y(x) \Rightarrow \operatorname{Evil}(x)$ yields:

```
King(John) ^ Greedy(John) => Evil(John)
King(Richard) ^ Greedy(Richard) => Evil(Richard)
King(Father(John)) ^ Greedy(Father(John)) = Evil(Father(John))
```

Obtained by substituting $\{x / J o h n\},\{x /$ Richard $\}$ and $\{x /$ Father(John) $\}$

Existential instantiation (EI)

- For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$\exists v a$
Subst(\{v/k\}, a)

- E.g., $\exists x \operatorname{Crown}(x) \wedge \operatorname{OnHead}(x, J o h n)$ yields:
$\operatorname{Crown}\left(C_{1}\right) \wedge \operatorname{OnHead}\left(C_{1}\right.$, John $)$
provided C_{1} is a new (not used so far) constant term, called a Skolem constant
- Skolemization : \exists elimination
- $\forall x \exists y$ Loves(y, x)
- Incorrect inference : $\forall x$ Loves(A, $x)$ - y may be different for each x
- Correct inference : $\forall x \operatorname{Loves}(f(x), x)$

Reduction to propositional inference

Suppose the KB contains just the following:

```
* King(x) ^ Greedy(x) = Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)
```

- Instantiating the universal sentence in all possible ways, we have:

King(John) ^ Greedy(John) \Rightarrow Evil(John)
King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

- The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction contd.

- Every FOL KB can be propositionalized so as to preserve entailment
- A ground sentence is entailed by new KB iff entailed by original KB
- Idea: propositionalize KB and query, apply resolution, return result
- Problem: with function symbols, there are infinitely many ground terms,
- e.g., Father(Father(Father(John)))

Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB

Idea: For $n=0$ to ∞ do
create a propositional KB by instantiating with depth=n terms see if α is entailed by this KB

Problem: works (will terminate) if α is entailed, loops forever if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is semidecidable (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every non-entailed sentence.)

Problems with propositionalization

- Propositionalization seems to generate lots of irrelevant sentences.
- E.g., from:

```
\forallx King(x) ^ Greedy(x) = Evil(x)
King(John)
\forally Greedy(y)
Brother(Richard,John)
```

- Given query "Evil(x) it seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant
- With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations.

Generalized Modus Ponens (GMP)

$\frac{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{q \theta}$ where $p_{i}^{\prime} \theta=p_{i} \theta$ for all i
$\operatorname{King}(\operatorname{John}), \operatorname{Greedy}(\mathrm{y}),(\operatorname{King}(\mathrm{x}) \wedge \operatorname{Greedy}(\mathrm{x}) \Rightarrow \operatorname{Evil}(\mathrm{x}))$
$\mathrm{p}_{1}{ }^{\prime}$ is King(John)
p_{1} is $\operatorname{King}(x)$
$\mathrm{p}_{2}{ }^{\prime}$ is $\operatorname{Greedy}(y)$
p_{2} is $\operatorname{Greed}(x)$
θ is $\{\mathrm{x} /$ John, $\mathrm{y} / \mathrm{John}\} \quad \mathrm{q}$ is $\operatorname{Evil}(x)$
q θ is Evil(John)

- GMP used with KB of definite clauses (exactly one positive literal)
- All variables assumed universally quantified

Soundness of GMP

- Need to show that

$$
p_{1}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \neq q \theta
$$

provided that $p_{i}^{\prime} \theta=p_{i} \theta$ for all i

- Lemma: For any sentence p, we have $p=\mathrm{p} \theta$ by UI

1. $\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \vDash\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \theta=\left(p_{1} \theta \wedge \ldots \wedge p_{n} \theta \Rightarrow q \theta\right)$
2. $p_{1}{ }^{\prime}, ; \ldots, ; p_{n}{ }^{\prime} \vDash p_{1}{ }^{\prime} \wedge \ldots \wedge p_{n}{ }^{\prime} \vDash p_{1}{ }^{\prime} \theta \wedge \ldots \wedge p_{n}{ }^{\prime} \theta$
3. From 1 and $2, q \theta$ follows by ordinary Modus Ponens

Unification

- We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)
$\theta=\{x / J o h n, y / J o h n\}$ works
- $\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$
- note : replace variables with terms!

p	q	θ
Knows(John,x)	Knows(John,Jane)	
Knows(John,x)	Knows(y,OJ)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

- Standardizing apart eliminates overlap of variables, e.g., Knows $\left(\mathrm{z}_{17}, \mathrm{OJ}\right)$

Unification

- We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match King(John) and Greedy(y)
$\theta=\{x /$ John,$y / J o h n\}$ works
- $\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows(John,x)	Knows(John,Jane)	$\{x / J a n e\}$
Knows(John, $)$	Knows(y,OJ)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

- Standardizing apart eliminates overlap of variables, e.g., Knows($\left.\mathrm{z}_{17}, \mathrm{OJ}\right)$

Unification

- We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)
$\theta=\{x / J o h n, y / J o h n\}$ works
- $\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows(John, $x)$	Knows(John,Jane)	$\{x / J a n e\}$
Knows(John, $x)$	Knows(y,OJ)	$\{x / O J, y / J o h n\}$
Knows(John, $x)$	Knows(y,Mother(y))	
Knows(John, $x)$	Knows(x,OJ)	

- Standardizing apart eliminates overlap of variables, e.g., Knows($\mathrm{z}_{17}, \mathrm{OJ}$)

Unification

- We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)
$\theta=\{x / J o h n, y / J o h n\}$ works
- $\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows(John,x)	Knows(John,Jane)	\{x/Jane\}
Knows(John,x)	Knows(y,OJ)	\{x/OJ,y/John\}
Knows(John,x)	Knows(y,Mother(y))	\{y/John,x/Mother(John)\}
Knows(John,x)	Knows(x,OJ)	

- Standardizing apart eliminates overlap of variables, e.g., Knows($\mathrm{z}_{17}, \mathrm{OJ}$)

Unification

- We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match King(John) and Greedy(y)
$\theta=\{x /$ John,$y / J o h n\}$ works
- $\operatorname{Unify}(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows(John,x)	Knows(John,Jane)	$\{\mathrm{x} /$ Jane $\}$
Knows(John, $x)$	Knows(y,OJ)	$\{\mathrm{x} / \mathrm{OJ}, \mathrm{y} /$ John $\}$
Knows(John, x$)$	Knows(y,Mother(y) $)$	$\{y /$ John, $\mathrm{x} /$ Mother(John) $\}$
Knows(John, $x)$	Knows(x,OJ)	\varnothing

- Standardizing apart eliminates overlap of variables, e.g., Knows($\left.\mathrm{z}_{17}, \mathrm{OJ}\right)$

Unification

- To unify Knows(John,x) and Knows(y,z), $\theta=\{y / J o h n, x / z\}$ or $\theta=\{y / J o h n, x / J o h n, z / J o h n\}$
- The first unifier is more general than the second.
- There is a single most general unifier (MGU) that is unique up to renaming of variables.
MGU $=\{y / J o h n, x / z\}$

The unification algorithm

function $\operatorname{Unify}(x, y, \theta)$ returns a substitution to make x and y identical inputs: x, a variable, constant, list, or compound y, a variable, constant, list, or compound θ, the substitution built up so far
if $\theta=$ failure then return failure else if $x=y$ then return θ
else if $\operatorname{Variable} ?(x)$ then return $\operatorname{Unify}-\operatorname{Var}(x, y, \theta)$
else if $\operatorname{Variable}$? (y) then return $\operatorname{Unify}-\operatorname{Var}(y, x, \theta)$
else if Compound? (x) and Compound? (y) then
return $\operatorname{Unify}(\operatorname{Args}[x], \operatorname{Args}[y], \operatorname{Unify}(\mathrm{Op}[x], \operatorname{Op}[y], \theta))$
else if $\operatorname{List} ?(x)$ and $\operatorname{List} ?(y)$ then
return $\operatorname{Unify}(\operatorname{Rest}[x], \operatorname{Rest}[y], \operatorname{Unify}(\operatorname{First}[x], \operatorname{First}[y], \theta))$
else return failure

The unification algorithm

```
function UNIFY-VAR(var, x,0) returns a substitution
    inputs: var, a variable
    x, any expression
    0, the substitution built up so far
    if {var/val} \in 0 then return Unify(val,x,0)
    else if {x/val}}\in0\mathrm{ then return UNIFY(var,val, }0\mathrm{ )
    else if OCCUR-CHECK?(var,x) then return failure
    else return add {var/x} to }
```


Unification

- Basic task: unify
$-p_{1}, p_{2}, \ldots, p_{n}$
$-q_{1}, q_{2}, \ldots, q_{n}$
- Proceed left to right, carry along current substitution θ
- Compare p_{i} with q_{i},
- predicates must match
- apply existing substitution
- unify instantiated pair, producing θ_{i}
- add new substitution to existing $\theta=\theta \cup \theta_{i}$

Example knowledge base

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Prove that Col. West is a criminal

Example knowledge base, cont.

... it is a crime for an American to sell weapons to hostile nations: American (x) ^ Weapon $(y) \wedge$ Sells $(x, y, z) \wedge$ Hostile $(z) \Rightarrow$ Criminal (x)

Nono ... has some missiles, i.e., $\exists x \operatorname{Owns(Nono,x)} \wedge$ Missile(x): Owns(Nono, M_{1}) and $\operatorname{Missile}\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West Missile (x) ^ Owns(Nono, x) \Rightarrow Sells(West, x, Nono)

Missiles are weapons:
Missile $(x) \Rightarrow$ Weapon (x)
An enemy of America counts as "hostile":
Enemy (x, America) \Rightarrow Hostile (x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...
Enemy(Nono,America)

Forward chaining algorithm

function FOL-FC- $\operatorname{Ask}(K B, \alpha)$ returns a substitution or false
repeat until new is empty
new $\leftarrow\}$
for each sentence r in $K B$ do

$$
\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow \operatorname{STANDARDIZE-APART}(r)
$$

$$
\text { for each } \theta \text { such that }\left(p_{1} \wedge \ldots \wedge p_{n}\right) \theta=\left(p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right) \theta
$$ for some $p_{1}^{\prime}, \ldots, p_{n}^{\prime}$ in $K B$

$$
q^{\prime} \leftarrow \operatorname{SUBST}(\theta, q)
$$

if q^{\prime} is not a renaming of a sentence already in $K B$ or new then do add q^{\prime} to new
$\phi \leftarrow \operatorname{UNIFY}\left(q^{\prime}, \alpha\right)$
if ϕ is not fail then return ϕ
add new to $K B$
return false

Forward chaining proof

Forward chaining proof

Enemy (x,America) \Rightarrow Hostile (x)
Missile (x) ^ Owns(Nono, x) \Rightarrow Sells(West,,x, Nono)
Missile $(x) \Rightarrow$ Weapon (x)

Forward chaining proof

American $(x) \wedge$ Weapon $(y) \wedge$ Sells $(x, y, z) \wedge$ Hostile $(z) \Rightarrow \operatorname{Criminal}(x)$

Forward chaining proof

*American $(x) \wedge$ Weapon $(y) \wedge$ Sells $(x, y, z) \wedge$ Hostile $(z) \Rightarrow \operatorname{Criminal}(x)$
*Owns(Nono,M1) and Missile(M1)
*Missile(x) ^ Owns(Nono,x) \Rightarrow Sells(West, x,Nono)
*Missile(x) \Rightarrow Weapon(x)
*Enemy(x,America) \Rightarrow Hostile(x)
*American(West)
*Enemy(Nono,America)

Properties of forward chaining

- Forward chaining is widely used in deductive databases
- Sound and complete for first-order definite clauses
- May not terminate in general if α is not entailed
- This is unavoidable: entailment with definite clauses is semidecidable
- Datalog = first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations ($\mathrm{p} \cdot \mathrm{n}^{\mathrm{k}}$ ground terms)

Matching facts against rules :

Hard matching example

Diff(wa,nt) $\wedge \operatorname{Diff(wa,sa)\wedge \operatorname {Diff}(nt,q)\wedge } \begin{aligned} & \text { Diff }(n t, s a) \wedge \operatorname{Diff}(q, n s w) \wedge \operatorname{Diff}(q, s a) \wedge \\ & \text { Diff(nsw,v) } \wedge \operatorname{Diff}(n s w, s a) \wedge \operatorname{Diff}(v, s a) \Rightarrow \\ & \text { Colorable() }\end{aligned} \Rightarrow$
$\begin{array}{ll}\text { Diff(Red,Blue) } & \text { Diff (Red,Green) } \\ \text { Diff(Green,Red) } & \text { Diff(Green,Blue) } \\ \text { Diff(Blue,Red) } & \text { Diff(Blue,Green) }\end{array}$

- Colorable() is inferred iff the CSP has a solution
- CSPs include 3SAT as a special case, hence matching is NP-hard
- Query complexity vs. data complexity

Efficiency of forward chaining

$\xrightarrow[p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)]{q \theta}$ where $p_{i}^{\prime} \theta=p_{i} \theta$ for all i

- Pattern matching itself can be expensive:
- Use indexing to unify sentences that have a chance of unifying
- Knows(x,y) vs Brother(u,v)
- Database indexing allows $\mathrm{O}(1)$ retrieval of known facts
- e.g., query $\operatorname{Missile}(x)$ retrieves $\operatorname{Missile}\left(M_{1}\right)$

Efficiency of forward chaining

$\frac{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q\right)}{q \theta}$ where $p_{i}^{\prime} \theta=p_{i} \theta$ for all i

- Matching rules against known facts

Conjunct ordering problem
Missile(x) ^Owns(Nono,x) \Rightarrow Sells(West, x, Nono)
NP-hard in general, but can use heuristics used for CSPs
Rule-matching tractable when CSP is tractable

Efficiency of forward chaining

1. Incremental forward chaining: no need to match a rule on iteration k if a premise wasn't added on iteration $k-1$ \Rightarrow match each rule whose premise contains a newly added positive literal
2. Retain partial matches and complete them incrementally as new facts arrive

Efficiency of forward chaining

Forward chaining infers everything, most of which can be irrelevant to the goal

- Solution : allow only those bindings that are relevant to the goal
- Use generic backward chaining
- Add Magic(x) extra conjunct to rules and Magic(c) to the KB
- E.g. Magic(West)

Backward chaining example

Criminal(West)

Backward chaining example

Backward chaining algorithm

```
function FOL-BC-ASK( }KB\mathrm{ , goals, }0\mathrm{ ) returns a set of substitutions
    inputs: KB, a knowledge base
        goals, a list of conjuncts forming a query
    0, the current substitution, initially the empty substitution { }
    local variables: ans, a set of substitutions, initially empty
    if goals is empty then return {0}
    q
    for each rin KB where Standardize-Apart }(r)=(\mp@subsup{p}{1}{}\wedge\ldots\wedge 的 = qq
            and }\mp@subsup{0}{}{\prime}\leftarrow\operatorname{UNIFY}(q,\mp@subsup{q}{}{\prime})\mathrm{ succeeds
        ans}\leftarrow\textrm{FOL}-\textrm{BC}-\operatorname{Ask}(KB,[\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{n}{}|\operatorname{ReSt}(goals)],\operatorname{Compose}(0,\mp@subsup{0}{}{\prime}))\cup\mathrm{ ans
    return ans
```

$\operatorname{SUBST}\left(\operatorname{COMPOSE}\left(\theta_{1}, \theta_{2}\right), \mathrm{p}\right)=\operatorname{SUBST}\left(\theta_{2}, \operatorname{SUBST}\left(\theta_{1}, \mathrm{p}\right)\right)$

Properties of backward chaining

- Depth-first recursive proof search: space is linear in size of proof
- But not in size of data (bindings)
- Incomplete due to infinite loops
- fix by checking current goal against every goal on stack
- Inefficient due to repeated subgoals (both success and failure)
- fix using caching of previous results (extra space)
- Widely used for logic programming (Prolog)

Prolog

- Appending two lists to produce a third:

```
append([],Y,Y).
append([X|L],Y,[X|Z]) :- append(L,Y,Z).
```

- query: append (A, B, [1,2]) ?
- answers:

$$
\begin{array}{ll}
A=[] & B=[1,2] \\
A=[1] & B=[2] \\
A=[1,2] & B=[]
\end{array}
$$

Logic programming: Prolog

- Algorithm = Logic + Control
- Basis: backward chaining with Horn clauses + bells \& whistles Widely used in Europe, Japan (basis of 5th Generation project) Compilation techniques $\Rightarrow 60$ million LIPS
- \quad Program $=$ set of clauses $=$ head $:-$ literal $_{1}, \ldots$ literal ${ }_{n}$.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
- Depth-first, left-to-right (within rule), top-down (within rule-set) backward chaining
- Built-in predicates for arithmetic etc., e.g., X is $\mathrm{Y} * \mathrm{Z}+3$
- Built-in predicates that have side effects (e.g., input and output predicates, assert/retract predicates)
- No occurs-check in unification - may produce results not entailed
- No checks for infinite loops - incomplete even for definite clauses
- Prolog : no caching; Tabled Logic Programming : memoization
- Database semantics :
- Unique names assumption
- Closed-world assumption ("negation as failure")
- e.g., given alive(X) :- not dead(X).
- alive (joe) succeeds if dead (joe) fails
- Closed domain assumption

Resolution: brief summary

- Full first-order version:

where $\operatorname{Unify}\left(\mathfrak{h}_{\mathrm{i}}, \neg m_{\mathrm{j}}\right)=\theta$.
- The two clauses are assumed to be standardized apart so that they share no variables.
- For example,

$$
\frac{\neg \operatorname{Rich}(x) \vee \operatorname{Unhappy}(x)}{\operatorname{Unhappy}(\text { Ken })} \quad \operatorname{Rich}(\text { Ken }) ~
$$

with $\theta=\{x /$ Ken $\}$

- Apply resolution steps to $\operatorname{CNF}(\mathrm{KB} \wedge \neg \alpha)$; complete (with factoring) for FOL

Conversion to CNF

- Everyone who loves all animals is loved by someone: $\forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]$
- 1. Eliminate biconditionals and implications

$$
\begin{aligned}
& A \Leftrightarrow B \text { becomes }(A \Rightarrow B) \wedge(B \Rightarrow A) \\
& A \Rightarrow B \text { becomes } \neg A \vee B
\end{aligned}
$$

$\forall \mathrm{x}[\forall \mathrm{y} \neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$ $\forall x \neg[\forall y \neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$

- 2. Move \neg inwards: $\neg \forall x p \equiv \exists x \neg p, \neg \exists x p \equiv \forall x \neg p$
$\forall x[\exists \mathrm{y} \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$
$\forall \mathrm{x}[\exists \mathrm{y} \neg \neg$ Animal $(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$
$\forall x[\exists \mathrm{y} \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$

Conversion to CNF contd.

- 3. Standardize variables: each quantifier should use a different one

$$
\forall x[\exists \mathrm{y} \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists \mathrm{z} \operatorname{Loves}(z, x)]
$$

- 4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:

$$
\forall x[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)
$$

- 5. Drop universal quantifiers:

$$
[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)
$$

- 6. Distribute \vee over \wedge :

$$
[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]
$$

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations: American (x) ^ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge$ Hostile $(z) \Rightarrow$ Criminal (x)

Nono ... has some missiles, i.e., $\exists x$ Owns(Nono,x) \wedge Missile(x): Owns(Nono, M_{1}) ^ Missile $\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West $\operatorname{Missile}(x) \wedge$ Owns(Nono, $x) \Rightarrow$ Sells(West, x, Nono)

Missiles are weapons:
Missile $(x) \Rightarrow$ Weapon (x)
An enemy of America counts as "hostile":
Enemy (x,America) \Rightarrow Hostile((x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...
Enemy(Nono,America)

Resolution proof: definite clauses

```
\negAmerican(x) \vee ᄀWeapon(y) \vee ᄀSells(x,y,z) \vee ᄀHostile(z) \vee Criminal(x)
```

ᄀ Criminal(West)

Efficient Resolution

- Resolution proofs can be long
- Strategies :
- Unit Preference
- Set of support
- Input resolution
- Complete for Horn clauses
- Linear Resolution
- Complete in general

Converting to clause form (Try this example)

$$
\begin{aligned}
& \forall x, y P(x) \wedge P(y) \wedge I(x, 27) \wedge I(y, 28) \rightarrow S(x, y) \\
& P(A), P(B) \\
& I(A, 27) \vee I(A, 28) \\
& I(B, 27) \\
& \neg S(B, A)
\end{aligned}
$$

Prove I(A,27)

Example: Resolution Refutation Prove $I(A, 27)$

Example: Answer Extraction

Unit resolution is (refutation) complete for Horn clauses : example

Can transform any non-unit resolution proof to unit resolution proof

Unit resolution is (refutation) complete for Horn clauses : general case

Non-Horn clauses ?

